Workshop (Acid and Base Chemistry)

Acid Base Definitions

• Arrhenius Acid - The properties of an acidic solution are due to the presence of the H+(aq) ion

Arrhenius Base - The properties of a basic solution are due to the presence of the OH–(aq) ion

- Brønsted-Lowry Acid proton donor
 Brønsted-Lowry Base proton acceptor
 - Conjugate Acid-Base Pair
 - Any two substances related to each other by the transfer of a proton can be considered a conjugate acid—base pair.

Neutralization Reaction

- When an acid reacts with a base, a neutralization reaction occurs
 - The H+ from the acid reacts with the OH- from the base to form water.
 - $\circ H^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(I)$

pH, pOH, [H⁺], and [OH⁻] calculations

$$pH + pOH = 14$$

 $pH = -log[H^{+}]$
 $[H^{+}] = 10^{-pH}$
 $pOH = -log[OH^{-}]$
 $[OH^{-}] = 10^{-pOH}$

1. What volume of a 0.1234 M solution of sodium hydroxide is required to completely react with 3.457 g of sulfuric acid? $2N_2OH + H_3SO_4 \rightarrow 2H_3O + No_3SO_4$

2. If 25.0 mL of hydrochloric acid solution were used to titrate 2.077 g of calcium hydroxide, what is the molarity of the hydrochloric acid solution?

HC2H2O2 + NaOH > H2O+ NaC2H2O2

3. A 25.00 mL sample of acetic acid was titrated with 20.00 mL of a 0.4157 M sodium hydroxide solution. What is the concentration of acetic acid?

4. Fill in the table

$[H_3O^+]$	[OH-]	рН	рОН
1.23x 10 ⁻⁵ M	8.13×10 ⁻¹⁰ M	4.910	9.090
1-2 8 ×10 ⁻⁸ M	8.23x 10 ⁻⁷ M	7.915	6.085
59×10-6 M	1.7×10-9 M	5.23	8.77
2.8×10-6M	3,5×10-9M	5.55	8.45

5. Determine which of the following is the most basic and which is the most acidic

a.
$$pH=3$$
 $pH=3$ \rightarrow most acidic
b. $pOH=3$ $pH=11$
c. $[H^{+}]=1\times 10^{-12}$ $pH=12$ \rightarrow \rightarrow $pH=12$ \rightarrow $pH=12$

b.
$$pOH = 3$$

d.
$$[OH^{-}] = 1 \times 10^{-2} \text{ poH}$$

water to make 2.23 L of solution?

0.023g (a(OH)) x Imole (a(OH)) x andle OH x 1 = 2.78x10 MOH 74.096 g(a(OH)) Imole (a(OH)) 2.23L = 2.78x10 MOH

 $pOH = \frac{109(2.78 \times 10^4)}{3.559} = \frac{10.44}{10.44}$ 7. What is the pH of a solution prepared by adding 0.045 g of hydrochloric acid in enough water

to make 2.23 L of solution? 0.045gHC1 x Inole HC1 x Imole HC1 x 1 = 5.53x10-4 [pH = 3.26]

8. What volume of hydrogen, measured at STP, is released when a 1.44 g chip of calcium is

added to 125 mL of a 1.25 M solution of hydrochloric acid? Catally - Cacly + H2

1.44gCa × Indeca = [0.0359 mole Catalle L.R. PV=nRT

V=0.035moleHCl = 0.156 moleHcl V=0.035moleHx (60.37L) torrx273

L mole L × 760 torr