

Many application problems require using the natural base or base e. The symbol 'e' represents an irrational number similar to π .

 $e\approx 2.71828$

> Raising e to a power: e^5 is found by inputting: 2nd ln 5 =

You screen will look like: e^(5	148.4131591	

> Raising e to a negative power: e^{-3} is found by inputting: $2nd \ln (-) 3 = 1$

You screen will look like: e^(-3	0.049787
----------------------------------	----------

The inverse function for exponentials is logarithms. For base e this requires using the natural log or ln.

> To take the natural log of a number 45, $\ln(45)$, is found by inputting: $\ln 45$] =,

Note that the calculator inserts the left parenthesis when you input ln. Remember that you can't take the log of a negative number so if you input ln(-45) you will get an error message.

Many application problems require using the common base or base 10.

> Raising 10 to a power: 10^5 is found by inputting: 2nd log 5 =,

You screen will look like: 10^{^(5} 100000

> Raising 10 to a negative power: 10^{-3} is found by inputting: 2nd log (-) 3 =,

You screen will look like: 10 ⁻³	0.001
---	-------

2nd PRB changes the answer to a fraction. The screen will look like 1 / 1000

> Raising 10 integer powers is just a matter of moving the decimal point, so a calculator is really only needed when raising 10 to a fractional exponent.

 $10^{3/4}$ is found by inputting: 2nd log (3 ÷4) =,

You screen will look like: $10^{(3/4)}$

5.623413252

Many applications involve using the inverse or common log (log base 10) function.

> To take the **common log** of a number: \log the number $|| =, \log(45)$ is found by inputting: $\log 45 || =$

You screen will look like: log(45)	1.653212514

> If you need to take the log to a base other than 10 or e, use the change of base formula first.

 $log_b(N) = \frac{log(N)}{log(b)}$ hence $log_3(34) = \frac{log(34)}{log(3)}$

Input $\log 34$ $\div \log 3$ =,

You screen will look like: log(34) / log(3) 3.209831677

1. Applications involving base e:

Population growth is given as $P(t) = P_0 e^{kt}$ where P_0 is the original population, k is the growth rate and t is the time. Suppose you are asked to find the population after 2 years given the original population was 2500 and the growth rate is 5%.

2. Applications involving base 10:

The measure of the intensity of an earthquake is given as a Richter Scale value using the equation

where A is the amplitude of the ground's vibrations (in micrometers) and P is the $R = log(\frac{A}{P})$ time (in sec.) it takes for the ground to oscillate one time.

Suppose that the ground oscillated 5000 micrometers every 0.2 sec., what is the Richter scale value? A = 5000 and P = 0.2 $R = \log(\frac{5000}{0.2})$

Input: $\log 5000 \div 0.2) =$

You screen will look like: log(5000/0.2)

4.397940009